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AMENDMENT NO. 1 SFPTEMBER 1993
TO

IS 9300 ( Part 2 ) : 1989 STATISTICAL MODELS
FOR INDUSTRIAL APPLICATIONS

PART 2 CONTINUOUS MODELS

( First Revision )

( Page S, clause 9.4 ) — Insert the following new clause after 9.4:
¢9.4.1 Example

The following data gives the running time ( in hours ) of the 40 head
boxes. Test whether the data follows the Weibull distribution:

249 259 844 65
303 309 121 32
649 21 146 43
23 104 99 301
130 52 584 21
411 177 583 508
643 281 173 9
180 169 248 42
128 173 524 883
212 547 31 85

The above data is arranged in the form of a frequency table as shown
in Table 10.

The next step is 10 calculate the expected frequencies for each class
interval under assumption ihat the data follcws Weibull distribution.
For this purpose, one has to estimate the parameters pand A of the
Weibull model. For estimating the patameters, the natural logarithmic
values of each of the x,’s are obtained and thereafter the mean and the
standard deviation of these x; values are calculated.

For this example, mean ( v’ ) = 5-042 1; and

standard deviation ( s, ) = 1:16
where, y; = log x;.



The estimate of the parameters are then obtained from the following
expression:

- (= 0-572 26 )
8 Wandk=exp[ (y+____ﬂ_

For this example, 8 = 1-106 1 and A = 0-003 85

Using the above estimates of the parameters in the frequency distri-
bution of the Weibull model, namely,

F(x)=1—exp [ —(M)®). where, = 1-106 1 and A = 0-003 85,
the expected frequency for each- class interval may be obtained as
given in Table 10.

Gooduess of Fit

The calculated value of ¥*for the example is 1-369 ( see Table 11).
The tabulated vatue of y* for 2 degrees of freedom at 5 percent level
of significance is 5°99. Since the calculated value is less than the
tabulated value, the null hypothesis that the data follows Weibull
distribution # accepted.

Table 10 Frequency Table for Running Time of Head Boxes
( Clause 9.4.1)

Class  Frequency }J‘ippﬁr ( Ax B F(x) F(x.)— Exzpected
| ]

Intervals F(xy) Frequency
(0) (x) (E)
0-100 12 100 0-3479 0-293 8 0-293 8 1178
101-200 10 200 0:748 9 C-5271 02233 9-33
201.300 5 300 11730 0:690 6 0-163 § 6:54
301-400 3 400 1-6120 0-800 § 0-1099 440
401-500 3 500 2-:064 0 0-873 1 00726 2:90
501-600 2 600 2-5250 09199 0-046 8 1-87-
601.700 2 700 29940 0-9499 0:0300 1-20
701-800 2 800 34700 0-968 9 00190 b-76
801-900 1 900 39530 0:980 8 00119 043
901 & above O - -— 1-000 0 00192 0-77




Table 11 Observed and Expected Frequencies

( Clause 9.4.1)
Observed Expected (0-Ey) LO-E
Frequencies Frequencies E.
(01) (Ey)
12 11-15 025 0
10 9.33 0-67 0048
5 654 ~1.54 0-363-
3 \, 6 440 1, 7-30 ~1-30 0232
3 2:90 |
2 1-87
2 1:20 |
247 076 3 508 -192 0-726
[ 0-48
0 0-71
Total 1369

et

(MSD 3)
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AMENDMENT NO. 2 SEPTEMBER 2000
TO
IS 9300 (PART 2):1989 STATISTICAL MODELS FOR
INDUSTRIAL APPLICATIONS

PART2 CONTINUOUS MODELS
( First Revision )
(Page 7, clause 7.4 ) — Insert the following clause at the end of 7.4:

7.5 Fitting a Gamma Model

7.5.1 Example — In a manufacturing process of jute proudcts, breaker card stage
is the first stage of filamentation for the subsequent processing. From a sample
of 10 cm carded sliver ( strand of carded raw jute is called sliver), single fibres
were scgregated and their lengths were measured which are grouped in a
frequency table ( see Table 6 ).

Fit a gamma model to the above data and test its goodness of fit.
Table 6 Length of Fibres (mm) of Carded Silver

Class Interval Frequency

0.S 350

5-10 575
10-15 500
15-20 325
20-25 215
25-30 135
30-35 50
3540 25
45-50 s

Total 2190
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The mean X and variance s> as calculated from the frequency table are:
X =13.20 mmand s = 72.63 mm

The parameters of the gamma model 1) and A can be calculated by solving the
following conditions:

TuryA and vy a2

A= Ffs? = 13.20/72.63 = 0.181 7
and 1) = AX = 2399 = 2.40 (approx)

The next step is to caiculate the expected frequencies (e) based on the
assumption that the above frequency distribution is coming from a gamma
distribution. The steps are described in Table 7.

The probability for each class interval is obtained from the table of the
Incomplete Gamma Function.

Table 7 Expected Frequencies Based on Gamma Distribution

Class Interval x I (0.1173x,1.4)  Probability Expected
(x,<x<2n) Frequency(ed

(- )
) @ ) O) (5) =2 190x(4)
0s s 0.149 0.149 32631
5-10 10 0.424 0275 60225
10-15 15 0.662 0.238 s21.22
1520 2 0815 0.153 33507
202 25 0.901 0.086 18834
2530 20 0.955 0.054 11826
3035 35 0977 ooz a8
3540 o 0989 0012 , 2628
4045 4 0.995 0.006 13.14
4550 % 0.998 0.003 657
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Goodness of Fit from x* Test : Aficr calculating expected frequencies (e;) for
cach class interva), their closeness with the observed frequencies (o) are tested
with the help of x° test (see Table 8).

Table8 Calculations for This x* Test

Class Observed Expected (Ore) ey
Interval Frequencies (01) Frequency
(2]

0 350 32631 i)
5-10 575 602.22 123
10.15 500 s21.22 086
15-20 325 335.07 030
2025 215 188.34 37
2530 135 118.26 237
30.35 50 4.8 007
3540 25 2628 0.06
4045 10 13.14 075
4550 s 657 037

Total x2 = 11.50

The total number of classes is 10. Three degrees of freedom are apportioned for
the estimation of n, standard deviation and for total frequency. Thus
caiculated value of x_is compared with the tabulated value [see IS 6200
(Part 2) : 1977 ) of 3" = 14.07 for 7 degrees of freedom at 5 percent level of
significance. Since the calculated value is less than the tabulated value the fit
can be taken as good one.

(Page 8, Tables 6,7, 8 and 9 ) — Table 6, Table 7, Table 8, Table 9 may be
replaced by Table 9, Table 10, Table 11, Table 12 respectively.
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* (Page8, clause 8.5 ) — In line S, reference to Table 6 may be replaced by
Table 9.
( Page 8, clause 8.5.1 ) —In line 3, reference to Table 7 may be replaced by
Table 10.

( Page 8, clause 8.5.2 ) — In line 4, reference to Table 8 may be replaced by
Table 11.

(Page 8, clause 8.5.3 ) — In line 2, reference to Table 9 may be replaced by
Table 12.

( Page 1, clause 9A4.1, Amendment No. 1) — In line 15, re erence to
Table 10 may be replaced by Table 13.

( Page 2, clause 9A.1, Amendment No. 1 ) — Reference to Tat .c 11 may be
replaced by Table 14.

( Page 2, Table 10, Amendment No. 1 ) — Table 10 may e replaced by
Table 13.

( Page 3, Table 11, Amendment No. 1 ) — Table 11 may be replaced by
Table 14.

(MSD3)

Printed at Simco Printing Press, Delhi
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Indian Standard

STATISTICAL MODELS FOR
INDUSTRIAL APPLICATIONS

PART 2 CONTINUOUS MODELS

( First Revision )

1 SCOPE

1.1 This standard ( Part 2 ) describes the most
commonly used continuous statistical models,
their potentiality and application in industries
with suitable illustrations.

The models covered in this standard are normal,
exponential, gamma, Weibull and lognormal.

2 REFERENCES

2.1 The following Indian Standards are necessary
agljuncts to this standard:

IS No. Title
187920 : 1985 Statistical vocabulary ( first
revision )
1S 9300 Statistical models for industrial

(Part1): 1979 applications : Part 1 Discrete

models

3 TERMINOLOGY

3.1 For the purpose of this standard, the defini-
tions given in IS 7920 : 19835 shall apply.

4 PROBABILITY DISTRIBUTIONS

4.1 When a random variable ¥ takes continuous
values, it is not possible to determine the
probability of ™ taking any particular value.
One may only consider the probability of X
taking any valuc within a very small interval of
Iength dx, that is, probability of X lying between
xand ( x + dx) or between [ x — (dr/2)] and
[ x4+ (dx/2)] as ¢( x) dv where ¢(x) is a
continuous function of X.and is called the pro-
bability density function or simply density funtion
of X. The probability density function ¢( x ) is
always non-negative and corresponds to py’s in
the discrete case:

Thus _l(’¢(x) dx =1

where x takes values between the interval

(a,b)
4.2 Mean and Variance of Probability Distribution

The mean of the probability distribution is called
the expected value of the variable X and denoted

by E( X ). The variance of the probability distri-
bution is denoted by V' ( X).

b
E(X)=[x¢(x)dx
and

b
V(X) =[x — ECX)P g x)dx

a

fx2¢(X)d¥—-[E(X)P

a

5 NORMAL MODEL

5.1 In many practical situations in the industry
and in the nature, there is a tendency for the
observations to cluster around some central
value, and at the same time the frequencies for
observations above and below this central value
have a declining trend and they taper off as one
goes farther and farther.

5.2 A frequency curve obtained in such situa-
tions is symmetrical and bell-shaped as shown in
Fig. 1. The curve, known as ‘Normal Curve’ has
extensive applications in statistical theory and
practice. In practice, many models can be well
approximated by the normal model. From the
point of view of presentation of data, the impor-
tant property of the normal model is that a set
of data constituting a random sample from such
a modcl can be represented completely by the
mean and standard dcviation of the sample.

5.3 A normal model has the following properties :

a) It is symmetrical, and bell-

shaped;

unimodal

b) The values of the mean, median and mode
are identical;

¢) It is uniquely determined by the two para-
meters, namely, mean and standard devia-
tion;

d) In the family of normal curves, smaller the
standard deviation. higher will be the
peak;

C) 95.4< -
will
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Fig. 1 A TypicAl NormAL CURVE

of twice the standard deviation on either
side of the megn. For the distance of
thrice the standard deviation, the corres-
ponding percentage is 99:73; and

f) If the original observations follow a normal
model with mean  and standard deviation o,
then the averages of random samples of
size n drawn from this population also
follow a normal model. The mean of the
new model ( of averages ) is same as that
of the original model, namely, 4 and the

standard deviation gets reduced to a/4/n.

NOTE — These properties have extensive applica-
tions in the control chart techniques and statistical
tests of significance

5.4 The density function for the normal model is
given by:

1
)o== -, __— €X
Y= Vine p{
—00 < X< + oo

- X

_.L.F_L’}

2 g2

where

y is the ordinate of the curve corresponding
to the value x of the variable,

u is the mean, and
¢ is the standard deviation.

5.5 The deviation of the observed value x from
the mean measured in the unit of standard
deviation, that is, z = ( x — u )/c is called ‘stan-
dard normal variate’. In terms of the standard
normal variate, the equation of the normal model
becomes:

y = 1 (—22)

V2= 2
This model has the mean -= 0 and the standard
deviation = 1:

§,5.1 Considering the area under the standard
normal curve to be equal to unity, the propor-
tion of area to the left of any given value of the
variable has been given in Annex A. This Annex
may be used for finding the proportion ( or
percentage ) of the area lying between any two
values of the variable.

exp

5.5.2 If it is desired to calculate the proportion
of observations that will be less than a specified
value x;, then the standardized variate
zy = (x1 — w )/o shall be calculated and required
proportion to the left of z; shall be directly read
from Anncx A.

5.5.3 If it is desired to calculate the proportion
of observations that will be more than a specified
value x;, then the standardized variate z; =
(x2 — p)/e shall be calculated. The correspond-
ing proportion to the left of z, as obtained from
Annex A shall be substracted from 1 for getting
the required proportion.

5.5.4 If the proportion of observations lying
between any two values x; and x5 (X2 > x;)is
required, the respective standardized variates
2y == (x; - p)foand z = (x — p)/c shall be
computed. The proportions of obscrvations less
than z, and z, shall be read from Annex A and
the difference between these two proportions
will give the required proportion.

5.5.5 Example

The specification imit for weight per unit area
of Indian Hessian is given as 299-329 g/m2. The
mean and standard deviation of the 225 observa-
tions on weight per unit area of Indian Hessian
are 3048 g and 70 g respectively. Find the
lpercentagc of material meeting the specification
imits.

The standardized variates are given by:
48 58

- 30
Zy == 299 73 —_— == -——7—— - —0'83
and
329 — 3048 242
2 = __.._’7.____ = ___,7_ =3 46

From Annex A, the area under the normal curve
to the left of standardized variate z; is 0-203 3.
The area under the normal curve to the left of
standardized variate 2, is 0°999 73,

Hence the area under the normal curve between
these two standardized variates z; and z;, that
is, the proportion of material meeting the speci-
fication limits is 0796 4 or 79:64 percent,



5.5.6 Example

The specification limits for tensile strength for
LPG cylinders is given as 36-46 kgf/mm?,
The mean and standard deviation of 200
observations on tensile strength were calculated
as 40°5 kgf/mm? and 2:77 kgf/mm? respectively.
Find the percentage of LPG cylinders meeting
the specified requirements.

The standardized variates are:

36 — 40°5 .
21:—777—-:: -—l 62
46 — 40-5

Dy = = 4-1-99
From Annex A, the area under the normal curve
to the left of standardized variate z) is 0052 6. The
area under the normal curve to the lcft of
standardized variate =, is 0976 7. Hence the
area under the normal curve between thesc two
standardized variates z; and z;, that is, the pro-
portion of cylinders meeting the specification

limits is 09241 or 92'41 percent,

5.6 Fitting of Normal Model

A manufacturing process produces cértain
machinc bolts. A random sample of 1 000 bolts is
sclected from a day’s production. The diamcter
of these bolts at the threaded end is measured
to the nearest one hundredth of a millimetre
and grouped in a frequency distribution as shown
in Table 1. Fit a normal model to the above
data and test its goodness of fit.

5.6.1 First the sample mean ¥ and standard
deviation s are calculated from the frequency
table. These values are as follows:

% = 10066 6 s = 0092

5.6.2 The next step is to calculate the expected
frequencies ( Ei) based on the assumption

and
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that the above frequency distribution is coming
froma normal model. This step is accomplished in
Table 2 with classes — eo and ! oo respectively
added at each end Z; and Z, shown in Table 2
are the standard normal variates for the lower
and upper bounds of each class interval. The
probability for cach class interval is obtained
from the tablc of areas under normal curve ( see
Annex A ).

Table 1 Diameter of Bolts ( mm )
( Clause 5.6)

Class Interval Frequency
9745 - 9795 2
9:795 - 9'845 5
9:845-9:855 27
9-895 -9:945 52
9-945 - 9:995 117
9:695.10°045 203

10°045-10'095 228

10-095-10°145 180
10-145-10-195 105
10°195-10°245 60
10°245-10°295 14
10-295-10-345 4
10-345-10°395 2
10:395-10-445 1

Total 1 €00

5.6.3 Goodness of Fit from X2 Test
After calculating the expected frequencies ( F; )
for each class interval, their closeness with the

observed frequencies ( Oy ) is tested with the help
of X2 test by using th: following formula:

(O — £y 2
2 _ VU =— L1 )
x - z £y

i

where each of the cxpected frequency is at
least 5. In case some expected frequencies are less

Table 2 Arca Under Normal Curve for Each Class Interval
( Clauses 5.6.2 and 8.5.2)

Class Interval A Z, Probability Ei
(Z,<Z < 2Z5) (1000 x 4
m (&) A3 ) )
- e .9:745 - 00 - 349 0 0
9:745 - 9-795 - 349 - 295 0001 6 1'6
9:795 - 9:845 — 295 — 2:40 0006 6 6'6
9-845 - 9-895 - 240 - 186 00232 232
9:895 - 9-945 — 1'86 - 132 00620 62'0
9945 - 9-995 - 132 - 077 0127 2 1272
9:995-10045 - 077 - 023 0188 4 1884
10°045-10'095 - 023 032 02165 2165
10°095-10"14S 032 0-86 01796 1796
10-145-10°195 086 1-40 01141 1141
10°195-10-245 1-40 1-95 00552 552
10-245-10°295 1-95 2'49 00192 192
10°295-10°345 249 303 0008 2 82
10°345-10-395 303 3'58 00012 12
10°395-10-445 358 412 0 o
10°445- + o 412 + )
* Tot.
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than 5, the adjacent classes are pooled so as to
make the expected frequency for each class at
least 5.

5.6.4 From Table 3, there are 11 classes left
after pooling from which the value of X2 is
calculated. But the degrees of freedom will be
only 8 because 2 degrees of freedom are lost for
estimating population parameters x and ¢ from
the sample data and the third degree of freedom
for the condition that the sum of expected frequen-
cies must be equal to sum of the observed
frequencies. The value of X2 for 8 degrees of
freedom and at 5 percent level of significance
from Annex B is 15:507. Since the calculated
valuc is less than the table value, the null hypo-
thesis is accepted thereby meaning that the
sample data has come from a normal model.

VA

—
(] X

>
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Table 3 Observed and Expected Frequencies
( Clauses 5.6.4 and 8.5.2)

Class Interval Observed Expected (01— E) (0, —E) (O —En
Frequencies Frequencies TOETT
(o) (Ei)
()] () 3) ) ) (6)
9:745- 9°795 . —1- . .
9:795. 9845 7 82 12 1-44 01756
9-845- 9895 27 232 38 14:44 06224
9-895- 9:945 52 620 -100 100°00 16129
9-945- 9-995 117 1272 -102 10404 08179
9'995-10°045 203 1884 146 21316 1'1131 4
10°045-10'095 228 216°S 11°5 132:25 06109
10°095-10°145 180 179°6 04 016 0'000 9
10°145-10°195 105 1141 -91 8281 07258
10°195-10°245 60 552 48 2304 0417 4
10-245-10°295 14 192 -52 2704 1-408 3
10°295-10-34S
10°345-10°395 7 64 06 036 0056 2
10°395-10°445
Total 7571917
6 EXPONENTIAL MODEL 6.3 Mean and Variance
6.1 This model has extensive applications in life Mean =y+ A=2Aifyis
testing and reliability calculations. For this taken as 0
model, the failure rate is constant and is the Variance =22

reciprocal of mean life.
6.2 The probability density function ( p. d.f.)
for this model is defined as:
1
y= y exp{—(x—y)A}

and A>0

where y and ( 1/ ) are location and scale para-
meters respectively. ( 1/A) is also referred as
failure rate.

r<x<oo

Taking y = 0, the p. d. f. of the exponential
model is usually defined as:

y=(1/A)exp (— x/A)
x>0 and A>0

6.2.1 A typical form of the p.d.f. of the
exponential model is given in Fig. 2. :

Standard deviation = A

Thus for exponential model, the failure rate is
the reciprocal of mean life and it is fully specified
by its mean. This model is very useful in des-
cribing the failure times of complex equipment.

6.4 Tables, for exponential model, have been
given in Annex C. Fractional parts of the total
area ( under the exponential curve ) greater than
( x/A ) have been tabulated. Thus, for example,
if ( x/A ) = 045, the probability of a value grea-
ter than ( x/A ) is 0:637 6. It may also be noted
that for the exponentially distributed population
368 percent of the values will be above the
average and 632 percent below the average.

6.4.1 Example

Results of sample measurement indicate that for
a particular equipment the mean time between

4



failures ( commonly known as MTBF ) is found
to be 100 hours. What is the probability that
the time between two successive failures of this
equipment will be at least 5 hours.

The problem is to find the area under the curve
beyond 5 hours

Here A = 100 hours ( x/A ) == 5/100 = 0-05

Corresponding to (x/A) = 0-05, the arca from 0-05
to o< from Annex Cis 0°951 2, thatis, 95:12 percent.
Therefore, the chance that the cquipment will
operate without failure continuously for 5 hours
or more is 95-12 pereent.

6.5 Fitting an Exponential Model

Bfore fitting an exponential modcl to a given
data, it is nccessary as a first step to examine
whether mean and standard deviation calculated
from the data are approximately of the same
order. There is no point in {itting an c¢xponen-
tial model if the mecan and standard dcviation
differ widely. Once a model has been fitted, it
is essential to carry out an exact test for good-
ness of fit.

6.5.1 Example

The following table gives the distribution of
demand for samples for a two-month period. Fit
an cxponential model to the data and also test
its goodness of fit.

Observed Frequency

Number of Units
Demanded ( x) (0)
0 8
1 8
2 5
3 4
4 4
5 3
6 2
7 2
Total 36

From the above data,
=242 and s =213

As ® and s are approximately of same order,
one can go for the actual fitting of data.

As mean := A = 242, (1/]A) =041 and the
density function is:

=04lexp(—04lx), x>0

The probabilities for different values of x are
calculated. Multiplying these probabilities by
the total frequency, that is, 36, the expected
frequencies arc obtained ( see Table 4 ).

The closencss of expected frequencies with the
observed frequencies is tested by using X2— test
( see Table 5 ).

IS 9300 ( Part 2 ) : 1989

Table 4 Observed and Expected Frequencies
( Clause 6.5.1)

No. of Units Observed Expected
Demandced, X Frequency, O Frequency, E
a) 0] 3)
0 8 12
1 8 8
2 5 5
3 4 4
4 4 2
5 3 2
6 2 1
7 2 2

Table 5 Calculations for the X2 - - Test
( Clause 6.5.1)

X o0 E (0O-E) (0O-E) (O-E)VE
M @ A3) ()] ) )
0 8 12 ~4 16 133
1 s 8 0 0 0
% i 5 0 0 0
4 )
: 4? 8 2} 6 2 4 067
3 2
6 2} 7 14s 2 4 030
72 2
X = 280

From Table 5, the total number of classes after
pooling arcS. Two degrees of freedom are
apportioncd for the total frequency and the
estimation of the mean. Thus, %2 - 2.80 is
compared with the tabulated value of X2 for 3
degrees of freedom which is 7°82 at S percent
level of significance ( see Annex B). Since
calculated value of ¥2 is less than the tabulated
value, the fit can be taken as a good one.

6.6 Reliability Estimation

The reliability of a unit ( or a system ) is defined
as the probability that it will perform satisfac-
torily atleast for a specified period of time, when
used in the manner and for the purpose intended,
without a major breakdown. If X is the life
time of the unit, the reliability of the unit at
time ¢ is given by:
R(t) —Prob (X >t)=1— F(t)

where F(t)is the distribution function of the
failure time and is defined as:

F(t)=Prob(X<1t) = éf(x)dx

where f( x ) is the p.d.f. of a given model.
For exponential distribution:
R(t1) =exp(—t/%)
where # = mean life
6.6.1 Examplc

A manut-

of elect: . VA o uns
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purpose, a randcm sample of 20 tubes is put to test
and their failure times (in hours) are given below:

99 356 579 946 141-4
1544 1633 2267 2443 3372
391-.8 4172 4446 4612 497'1
5826 6068 6163 6720 7847

Assuming that the failure rate is constant
( exponential model ), he wants to find the pro-
bability that an electronic tube will survive for
at least | 000 h. For this purpose, the average is
first calculated and then reliability.

20
= I xi/n = 346:98
i=1 =

R(t)=exp(— 1/%)
At t = 1 000 hours
R(t) = exp ( — 1 000/346:98 ) == 0:056

Therefore, the probability that an clectronic tube
will survive for at least 1 000 h is only 5:6 percent.

6.7 Reliability Estimation with Censored Samples
6.7.1 General

In many practical situations it will not be possible
to carry out life testing experiments on all the
samples as these are usuvally destructive. In such
cases, the experiment may be terminated either
when a pre-assigned number of items, say r
( < n) have failed ( known as failure-censored
samples ) or the experiment may be terminated
after a pre-assigned time ( known as time-censor-
ed samples ).

6.7.2 Failure —— Censored Samples

Let n items were put to life test experiment
and it was terminated when r( < n ) items failed.
Let the failure times of r items be x;
< X3 < cuven < xr and (n — r) items survived
until time x;. The items that failed may or may
not be replaced:

a) Without replacement

The maximum likelihood estimate of A, a
parameter of exponential model when
failure items are not replaced, is given by:

A = [,‘Ea’“ $(n=r)xlr

b) With replacement
‘The maximum likelihood estimate of A is

given by:
A= (nx)r
Reliability function, R(¢) = exp ( — #/1)
6.1.3 Example

60 items were placed on test and the test was
terminated after the first 10 items failed. The

failure time (in hours) were recorded as

follows:;
85 151 280 376 492
520 623 715 820 914

Assuming the failure time distribution to be
exponential, estimate the paramcter of exponen-
tial model and also the reliability at
t = 600 hours, if the failed items are:

a) not replaced, and
b) replaced.

In this example,
n=260andr =10

When the items are not replaced,
N 10
A= (%

i=1

K(600) -- exp ( — 6V0/5068 ) =- 0-8587
When the items are replaced,

x; + 50 x40 )/10 = 5068 hours

A=n x10 = 5 484 hours
R (600) == exp ( — 600/5 484 ) = 0-896 7

6.7.4 Time Ccensored Samples

Let there be m items that failed before stipvlated
time (7,) and the failure times of these m items
be x; < x3...... < xm. Let thc items that
failed are not replaced. The maximum likelihood
estimate of A is given by:

’S m
A={Zxi+(n—m)t}m m>0
-1

i
= nte, m= 0, and

exp (— 1/A)

!

R(1)

7 GAMMA MODEL

7.1 In accordance with the parallel strand-theory
where each component consists of many sub-
components in the manner of a multi-strand
rope, the characteristic life pattern of the com-
ponent is the sum of the characteristic life
patterns of all sub-components. If the sub-
components follow the exponential model, then
the main component can be expected to follow
the gamma model.

7.2 The gamma model is actually the model of
sum of n, identical and independent exponential
variables. Thus the probability density function
for the gamma model can be written as;

(x/A )o-) ex/A
Mn—1)!

When n = 1, it reduces to exponential model
discussed in 6.

Typical forms of the probability density function

y-: 0<x<°°, A>0



of the gamma modcl are given in Fig. 3 (for
n=-1/2,1and 3).

"}

1/7A

(] A X

Fig. 3 TypicaL p.d.f. oF THE GAMMA MODEL

NOTE — Although gamma model has been
obtaincd as the sum of n identical and independent
exponential variables, it can be generalized to non-
integral values of n also. Its generalized form can
then be written as:

L NN exp - (M)
Al'n
where
'm=(n—1)r'(n-1)
— (n — 1)! for all integral values.
rr o!=1r(1/2)—andI0 =1

7.3 Mean and Variance
E(X)=nAa
V(X)- nX, and
Standard deviation = 47 A,

7.4 For the convenience of preparing tables and
charts for the gamma model, it has been standar-
dized. The standardized random variable is

defined as:
u = xA
Thus the probability density function is given by:
eu!
'n
E(u)=n and ¥V (u) = n,and
Standard deviation = 4n.

Forn = 1, the model is called standardized
exponential model.

0 < u< oo,
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8. LOG NORMAL MODEL

8.1 This model has been used to approximate
wear out failures when the failure rate increases
with time. Suppose the characteristic life pattern
of the component is taken as the size of the
fatigue crack at the successive stages of its
growth. Assuming the proportional effect theory
of failurcs wherein the crack growth at any stage
is proportional to the crack size at the preccding
stage for all stages, the size of the crack can be
expected to follow the lognormal model.

8.2 If any variable X is lognormally distributed,
then log, X is distributed normally.

g‘hc density function for lognormal model is given
y:

1
iy {— (loga X — u)?/2 0%}
where ¢ > 0and0 < XY < oo = 0 elsewhere

where ;. and o are the mean and standard devia-
tion of the transformed characteristic lognX:

8.2.1 Typical forms of the probability density
function of lognormal model are given in Fig. 4
(forg =03,1'0and 1-5)

Y ’ \

0 R X

FiG. 4 TypicAL p.d.f. oF THE LOGNORMAL MODEL

8.3 Mean and Variance

Mean=exp(p.+3;)

Variance = [exp ( 2u + o2)][exp (o2 — 1)]
Standard deviatior(n

=\[[cxp(—2—"———'2*'°z)][exp(°’— 3}

8.4 The fitting of a lognormal to the data can be
done by first finding the natural logarithms of the
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given variable X and then fitting a normal model
to these values. A %2 test can be carried out to
examine the goodness of fit. Further, the mean
and variance of the variable X can be calculated
from the mean x and standard deviation ¢ of
logn X by the formula given in 8.3.

8.5 Example

A new control device was tested on 50 diesel
locomotives. Whenever a device failed, the dis-
tance was recorded and the device was returned
to the factory for failure analysis. The distance
of each device is given in Table 6. The underlined
failure mechanism suggested a lognormal model
for time to failure. Test whether the data follows
lognormal modél and also obtain its parameters.

Table 6 Distance in Million Metres to Failure
( Clause 8.5)

8.5.2 The next step is to calculate the expected
frequencies as calculated in 5.6.2 ( see also
Tables 2 and 3 ). The expected frequencies so
calculated are given in Table 8.

Table 8 Expected Frequencies
( Clause 8.5.2)

Probability

Interval Z, Z, (2,<Z<2Z) Ei
3°5-3:8 — @ — 179 00367 18
3-8-4'1 —179 —128 00636 32
4'1-4'4 — 1-28 — 076 01233 62
4'4-4'7 — 076 — 024 0181 6 91
47-50 —024 +028 02051 10-2
50-53 +028 +079 01749 87
5:3-56 + 079 + 1:31 01197 60
5'6-5'9 + 1'31 + 18 00615 31
5'9-62 + 183 + 234 00240 11
6°2 and above + 2:34 + o 00100 0S5

36'6 404 47 494 54'6
60°3 63:4 667 137 17§
815 831 856 900 928
94'6 995 1046 108-8 1nri
113:3 115'6 1179 1203 1252
1277 130'3 1330 1356 138-4
141°2 144:0 164:0 169 0 1742
179'5 1849 1906 196'4 198-3
2127 2259 2398 2547 2677
2843 3142 3472 3838 403°4

8.5.1 As mentioned in 8.4, the natural logarithms
of these distances shall be first obtained and then
a frequency table prepared ( see Table 7 ).

Table 7 Frequency Table for Natural Logarithms
of Distances

( Clause 8.5.1)

8.5.3 Goodness of Fit

The value of %2 calculated for the exampleis 1-12
(see Table 9). The table value of X2 for 3degrees
of freedom at 5 percent level of significance is 7-82
( see Annex B ). Since the calculated value is
less than the table value, the null hypothesis that
the data has come from a lognormal model is
accepted.

9 WEIBULL MODEL

9.1 This model has extcnsive applications in
reliability testing of complex items. The failure
time of complex items, when plotted against time,
generally assumes the shape of ‘bath-tub’ curve
with 3 distinct phases, namely, debugging phase,
chance failure phase and wear out phase. The
Weibull model is capable of describing all these

Class Intervals Frequency phases by taking appropriate values of the
35.38 2 different parameters.
3 : 9.2 The Weibull is a family of models having the
44-4'7 9 general density function as:
4750 1 y = BAB (x—y ) exp {— A (x — 1)
53-56 5 where
3.;;?.2 g A is the scale parameter (A > 0),
—_ @ is the shape parameter (8 > 0), and
Total 50 y is the location parameter (y < x < o0).
Table 9 Observed and Expected Frequencies
( Clause 8.5.3)
Observed Expected (0i—Ep) (Oi—~E (O — Ei )
Frequencies Frequencies — E_

(01) (Ey)

2 18 .

s 324 50 0 0 0

5 62 —12 1-44 023

9 91 —01 001 0

13 102 28 784 077

8 87 —0'7 049 006

: o

ap 10 ,.2} 108 ~038 064 006

0 oS

Total = —I'|2




9.3 The curve varies greatly depending on the
values of these parameters. The location para-
meters is the smallest possible value of X. This is
usually taken as O thereby simplifying the den-
sity function as:

V- BAxBlexp{ —(Ax)P},O< ¥ < oo

The shape parameter § reflects the pattern of
the curve. When B = 1, the Weibull model
reduces 1o exponential model. When 8 is about
35 and A = 1, the Weibull model approximates
to norms. model. The ability of this model has
made it increasingly popular in practice because
it reduces the problem of examining a set of data
and deciding which of the several common
models, like normal or exponential, would be
most appropriate.

9.3.1 Typical forms of the probability density

function of the Weibull model are given in Fig. 5
(forp = 1/2,1and 4).

9.4 Mean and Variance

v (1) (1)

- (e

), When v is taken as

0, and
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Variance =

oLr(52) - {r(58)F]

AZ
Standard deviation

AT

0 1/7A X
FiG. 5 TypicaL p.d.f. oF THE WEIBULL MODEL
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ANNEX A

( Clauses 5.5.1, 5.5.2, 5.5.3, 5.5.4, 5.5.5, 5.5.6 and 5.6.2)

AREAS UNDER THE NORMAL CURVE

: L ( x, represents any desired value of the variable x )

Proportion of total area under the curve left of =

Xy =y

NorMAL CURVE

The shaded portion is the area which is given in the table.
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AREAS UNDER THE NORMAL CURVE — Contd
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ANNEX B
( Clauses 5.6.4, 6.5.1 and 8.5.3 )
CRITICAL VALUES OF x2-DISTRIBUTION

Degrees of Significance Level Degrees of Significance Level
Freedom r— A - Freedom — A -
008 001 005 00l
m e 6‘1’4 Q) @ ®
3. .
; 599 9-21 20 31-41 3757
3 782 11°34 21 3267 3893
4 9-49 13-28 22 3392 4029
5 11-07 15:09 23 3517 41°64
6 - 12°59 16'81 24 3642 4298
7 14:07 1848 25 37-65 44-31
8 15'51 2009 26 38-89 4564
9 1692 2167 27 4011 4696
10 18:31 2321 28 41°34 4828
11 19'68 24'73 29 42:56 49-59
12 2103 26°22 30 4377 50-89
13 2236 2769 40 5575 6369
14 23°69 29'14 50 6750 76°15
15 25-00 3058 60 79:08 8838
16 26'30 3200 70 90°53 10042
17 27'59 33-41 80 101-88 112:33
18 2887 3481 90 11314 12412
19 3014 3619 100 12434 13581
ANNEX C

( Clauses 6.3 and 6.3.1)

PROPORTION OF THE AREA UNDER EXPONENTIAL DISTRIBUTION TO THE
RIGHT OF THE VALUE X/A

o / N
A is the mean value

x/A 000 001 002 003 004 005 006 007 008 009

00 10000 09900 09802 09704 09608 09512 09418 09324 09231 09139
01 0948 0858 0860 08781 08614 0894 08521 08437 08353 0'8270
02 08187 08106 08025 0795 0786 07788 0771 1 07634 07758 07483
03 07408 07334 07261 07189 07118 07047 06977 0697 06839 06771
04 06703 06637 06570 06505 06440 06376 06313 06250 06188 06126
0S 06065 06005 05945 05886 05827 05769 05712 05655 05599 05543
06 05488 05434 05579 05326 05273 05220 05169 05117 0566 05016
07 0496 04916 04868 (4819 04771 04724 04677 04630 04584 04538
08 04493 04449 04404 04360 04317 (04274 (04234 04190 04148 04107
09 04066 04025 03985 03946 03906 0387 03829 03791 03753 03716

00 o1 02 03 04 0's - 06 07 08 9'9

10 03679 03329 03012 02725 02466 02231 02019 01827 01653 01496
20 01353 01225 01108 01003 00957 00821 00743 00672 00608 00550
30 00498 00450 00408 00369 00334 00302 00273 00247 00224 0022
40 00183 00166 00150 00130 00123 00111 00101 0009 1 00082 0007 4
50 00067 00061 00055 00050 00045 00041 00037 00033 00030 00027
60 00025 00022 00020 000I8 00017 00015 00014 00012 00011 00010
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